Некоторые аспекты полусухого прессования кирпича

Автор: 
Шлегель И.Ф. - канд. техн. наук, доктор, профессор, член-корреспондент РАЕН, генеральный директор  ООО «ИНТА-СТРОЙ», г.Омск

Так уже исторически сложилось, что технология пластического формования считается чуть ли не единственно возможным способом получения керамического кирпича. Такое мнение поддерживается некоторыми учебниками и западными фирмами – поставщиками оборудования в основном для этой технологии.

Керамики, традиционно имеющие дело с лепкой, гончарным производством, не мыслят иного способа изготовления кирпича, полусухое прессование воспринимается многими специалистами негативно.

Признаюсь, 25 лет назад я и сам был в плену этих традиций, пока не убедился в результате масштабной экспериментальной работы в громадном потенциале прессования керамики при пониженной влажности.

Было сформовано около 4 тысяч образцов при различной влажности и различном давлении прессования. Глина предварительно высушивалась, размалывалась, добавлялась вода для получения определенной влажности, и растиранием получался пресс-порошок или масса (при большой влажности).

Прессовались образцы диаметром и высотой 25 мм, высушивались в естественных условиях и обжигались в муфельной печи при 1000°С. Для каждого типа глины, влажности и усилия прессования было получено по 5 образцов, которые после обжига проходили испытание на сопротивление сжатию. Полученные данные усреднялись и сводились в таблицы для каждого типа глин. Таблица 1 представляет результаты для одной из глин, для других глин результаты отличаются, но характер зависимостей примерно одинаков.

 

Таблица 1. Зависимость сопротивления сжатию от усилия прессования и влажности

Усилие прессования Fпр., МПа

Сопротивление сжатию, Σсж., МПа, при влажности, %

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2,0

-

-

-

-

4

4

3

6

9

10

12

19

28

24

2,5

-

-

-

-

5

5

6

10

16

20

22

26

28

23

3,2

-

-

-

2

6

7

10

13

21

28

26

26

37

22

4,0

-

-

-

4

7

9

12

19

25

27

25

26

25

21

5,0

-

-

2

5

9

12

16

22

29

28

24

25

23

20

6,3

-

-

6

6

11

17

20

29

32

32

28

26

22

18

8,0

-

-

6

8

15

20

24

32

36

31

31

27

20

17

10,0

-

5

9

11

19

23

32

39

37

38

32

28

23

19

12,5

-

5

10

14

23

27

40

41

36

36

30

27

26

23

16,0

8

9

10

20

28

30

42

40

36

36

29

25

25

20

20,0

8

10

14

24

31

33

41

36

33

37

29

25

25

18

25,0

11

12

15

29

34

37

40

34

35

38

28

24

24

17

32,0

12

15

19

34

39

41

43

36

37

38

28

24

23

17

40,0

15

17

19

37

41

44

46

42

39

38

27

24

-

-

50,0

20

21

25

40

47

51

47

45

40

39

26

24

-

-

63,0

25

24

30

42

49

53

48

47

41

40

26

24

-

-


По результатам эксперимента построены графики зависимостей (рис.1, 2, 3) причем шкала давлений прессования сделана логарифмической.
 

Рисунок 1. График зависимости сопротивления сжатию (Σсж.) образцов от усилия прессования (Fпр.) и влажности глины 6 -11 %.

Рисунок 1. График зависимости сопротивления сжатию (Σсж.) образцов от усилия прессования (Fпр.) и влажности глины 6 -11 %.


Как видно из рис.1 для пресс-порошка влажностью 6-11% наблюдается экспоненциальный рост прочности при увеличении давления прессования, причем при влажности 11 % прочность достигает значения 53 МПа при давлении прессования 63 МПа. При влажности 9 % - 11 % при больших давлениях заметно снижение прироста прочности, то есть приближение к экстремальным её значениям.

Рисунок 2. График зависимости сопротивления сжатию (Σсж.) образцов от усилия прессования (Fпр.) и влажности глины 12 - 15%.

Рисунок 2. График зависимости сопротивления сжатию (Σсж.) образцов от усилия прессования (Fпр.) и влажности глины 12 - 15%.


Для глин влажностью от 12 до 15 % (рис. 2) характер зависимостей иной – наблюдается промежуточный экстремум, затем прочность образцов падает при увеличении давления прессования. Это эффект так называемой «перепрессовки», когда из пор на поверхность начинает выдавливаться вода, создавая расслоение внутри образца. При дальнейшем повышении давления прочность опять начинает расти. Для некоторых глин наблюдается 2-3 таких экстремума, что связано, видимо, с вымещением воды из различных по размерам пор.

Здесь можно согласиться с авторами [1] «Во многих случаях ошибочным является сложившееся мнение, что чем больше давление прессования, тем лучше». Вопрос подбора оптимального давления и влажности должен решаться при отработке технологии в лабораторных условиях для каждого вида сырья.

Рисунок 3. График зависимости сопротивления сжатию (Σсж.) образцов от усилия прессования (Fпр.) и влажности глины 16 - 19%.

Рисунок 3. График зависимости сопротивления сжатию (Σсж.) образцов от усилия прессования (Fпр.) и влажности глины 16 - 19%.


Для более влажных прессовок от 16 до 19 % (рис. 3) и при более низких давлениях прессования наблюдаются также максимумы прочности, однако за ними следуют более протяженные участки её падения.

Если взять все полученные максимальные значения прочности при различной влажности глины и представить в виде графика (рис. 4), то можно наглядно убедиться, что увеличение влажности более 11% приводит к снижению прочности керамического черепка.

Рисунок 4. График зависимости максимального сопротивления сжатию (Σсж.) образцов от влажности (W) глины карьерной (Б) и отработанной на дезинтеграторе (А).

Рисунок 4. График зависимости максимального сопротивления сжатию (Σсж.) образцов от влажности (W) глины карьерной (Б) и отработанной на дезинтеграторе (А).


График (рис. 4) сделан для двух глин, однако характер зависимостей одинаков. Падение прочности в левой части графиков свидетельствует только о том, что в эксперименте не были достигнуты те давления, при которых наблюдался бы экстремум для менее влажных образцов. Дальнейшие эксперименты подтвердили, что и на таких влажностях образцов (6-10%) получаются прессовки очень высокой прочности, однако такой уровень давлений (более 63 МПа) не достижим в современном прессовом оборудовании и для массового производства кирпича не пригоден.

Таким образом, было установлено, что при влажности пресс-порошка 8-12 % возможно получение керамического черепка с прочностью свыше 30 МПа, вплоть до 50 МПа, а при введении различных добавок и специальной подготовки шихты до 80 МПа. Оставалось загадкой, почему в реальном производстве на прессах СМ1085 Б, обеспечивающих усилие прессования до 40 МПа получается рыхлый кирпич, не обладающий ни прочностью ни морозостойкостью.

С этой проблемой мы разобрались, когда поняли, что при многопозиционном прессовании из-за неточности дозирования никогда не получится равномерная прессовка 4-х изделий. В нашей статье [2] мы дали подробный анализ этой проблемы. Рис. 5 поясняет вышесказанное.

Рис 5. Неравномерность прессовки при многопозиционном прессовании

Рис 5. Неравномерность прессовки при многопозиционном прессовании: 2 - оптимальная плотность прессовки, 1,3,4 - пониженная плотность прессовки


Выход из этой ситуации очевиден – создание однопозиционного пресса с производительностью не менее 6 млн. шт. кирпича в год. И такой пресс был создан и испытан в производственных условиях. Работа пресса ШЛ 403 (рис. 6) была продемонстрирована участникам конференции «Керамтэкс», прошедшей в Омске в марте 2011 года [3]. Полученная прочность кирпича церковного формата (190х90х40 мм) свыше 40 МПа удивила многих участников конференции. Сейчас разработан пресс ШЛ 503 для нормального формата кирпича.

Рис.6 Пресс ШЛ 403

Рис.6 Пресс ШЛ 403


Хотелось бы остановиться ещё на одной проблеме полусухого прессования – появлении трещины в середине прессовки на ложковых и тычковых гранях. Об этой проблеме пишут ряд авторов [4], [5], давая своё объяснение причине появления этих трещин и предлагая методы их устранения.

Эти трещины часто называют «перепрессовочными» имея в виду чрезмерное давление прессования. Однако установлено, что такие трещины появляются при любых давлениях прессования и напрямую с ним не связаны.

На наш взгляд механизм появления срединных трещин состоит в следующем. При прессовании вблизи пуансонов создается область повышенного давления (рис. 7). Пока пресс-порошок рыхлый, воздух устремляется из области повышенного давления в середину прессовки, где давление меньше. Таким образом, в середине прессовки возрастает объем порового воздуха. При дальнейшем движении пуансонов поры закрываются, а воздух, собранный в средней части, начинает сжиматься, давление воздуха в этой части прессовки становится соразмерным давлению прессования. После снятия давления прессования этот воздух, расширяясь, рвет сырец именно в средней части. При неравномерном истечении воздуха через зазоры возможен сдвиг срединной трещины в ту или другую сторону, однако характер процесса от этого не меняется.

Введение сквозных пустотообразователей (рис. 7б) решает эту проблему. В конструкциях наших прессов используются тупиковые пустотообразователи (рис. 7в), которые устраняют срединные трещины.

Рис 7. Происхождение срединных трещин (а) и способы устраненияРис 7. Происхождение срединных трещин (а) и способы устраненияРис 7. Происхождение срединных трещин (а) и способы устранения

Рис 7. Происхождение срединных трещин (а) и способы устранения: б - введение сквозных пустото-образователей, в - введение тупиковых пустото-образователей (стрелками обозначено направление движение воздуха)


Нами было опробовано и вакуумирование пресс-порошка, однако это решает проблему лишь частично и в дальнейшем мы от этого процесса отказались.

Особо хотелось бы рассмотреть проблему сушки сырца полусухого прессования. Ведь ранее многие авторы учебников считали, что такой сырец не требует сушки и может сразу подаваться в обжиговую печь. Здесь нельзя не согласиться с мнением Кондратенко В.А. [4]: «существующая традиционная схема производства кирпича полусухим способом прессования, исключающая подсушку свежесформованного сырца перед укладкой его на обжиговую вагонетку, изначально ошибочна». 

ВНИИСтром во главе с Ашмариным Г.Д. в последнее время провел значительные исследовательские работы по сушке кирпича-сырца перед обжигом [6], причем, как считает Стороженко Г.И.,: «режим сушки должен быть мягким» [7].

Нашим институтом проводятся исследования процесса сушки кирпича-сырца полусухого прессования, как в лабораторной сушилке, так и на действующем экспериментальном заводе ШЛ 400 [3]. Результаты экспериментов будут опубликованы позднее при наборе необходимого количества данных, однако уже сейчас можно сделать следующие выводы:
 

  1. Несмотря на значительно более короткий срок сушки кирпича полусухого прессования к этому процессу следует относиться также скрупулезно, как и к сушке при пластическом формовании.

  2. Влажность поступающего в печь сырца должна быть не более 3%.

  3. Технология сушки требует обеспечения более мягких режимов в начале сушки и более жестких в конце.

  4. Сушка сырца в штабеле или на обжиговой вагонетке значительно увеличивает срок сушки.

  5. Для оптимизации процесса сушки при полусухом прессовании применимы те же способы, что и при пластическом формовании: введение отощителей в сырьевую массу, правильная организация потоков теплоносителя, нанесение влагозадерживающих составов [8] на ложковые и тычковые грани и т.д.

  6. Разработанный институтом «ИНТА-Строй» способ вертикальной кассетной сушки с переменными режимами прекрасно вписывается в технологию обжигово-сушильного комплекса заводов полусухого прессования [3]. Качество сушки обеспечивает выпуск кирпича с марочностью свыше М 300.

  7. Вертикальные кассетные сушилки могут быть использованы и для реконструкции действующих заводов полусухого прессования в комплексе с тоннельными или кольцевыми печами.

  8. Таким образом, практика последних лет показала, что при полусухом прессовании и правильной организации технологического процесса возможно получение облицовочного кирпича высокого качества с прочностью свыше 30 МПа, морозостойкостью не ниже F 50 и отличного эстетичного вида. И что самое главное выпуск такого кирпича обходится дешевле, то есть себестоимость его ниже на 20-50 %.


Список литературы:

1.    Котляр В.Д., Терехина Ю.В., Небежко Ю.И. Перспективы развития производства керамического кирпича полусухого прессования// Строит. материалы.2011.№2.С.6-7.
2.    Шлегель И.Ф. Проблемы полусухого прессования кирпича // Строит.материалы.2005.№2.
3.    Шлегель И.Ф., Шаевич Г.Я., Михайлец С.Н., Андрианов А.В., Бахта А.О., Иванов В.Г., Макаров С.Г., Мирошников В.Е., Носков А.В., Титов Г.В. Новый комплекс ШЛ 400 для производства церковного кирпича// Строит.материалы.2009.№4.
4.    Кондратенко В.А.Керамические стеновые материалы: оптимизация их физико-технических свойств и технологических параметров производства//М., Композит,2005.
5.    Кремер Р., Лутц Р. Повышение качества фасонных огнеупорных изделий за счет современной технологии прессования//Огнеупоры и техническая керамика.2007.№4.С.31-35.
6.    Ашмарин Г.Д., Курносов В.В., Беляев С.В., Ласточкин В.Г. Обоснование эффективности компрессионного формования керамических строительных материалов// Строит.материалы.2011.№2.С.8-9.
7.    Стороженко Г.И., Болдырев Г.В. Опыт работы кирпичных заводов полусухого прессования с эффективной массоподготовкой глинистого сырья// Строит. материалы.2011.№2.С.3-5.
8.    Шлегель И.Ф., Шаевич Г.Я., Гришин П.Г., Булгаков А.Н., Титов Г.В., Котелин П.Л., Коровицкий Н.Л. Эффективный способ повышения качества кирпича – нанесение влагозадерживающих составов// Строит. материалы.2004.№2